Painless Breakups - Efficient Demixing of Low Rank Matrices

نویسندگان

  • Thomas Strohmer
  • Ke Wei
چکیده

Assume we are given a sum of linear measurements of s different rank-r matrices of the form y = ∑s k=1Ak(Xk). When and under which conditions is it possible to extract (demix) the individual matrices Xk from the single measurement vector y? And can we do the demixing numerically efficiently? We present two computationally efficient algorithms based on hard thresholding to solve this low rank demixing problem. We prove that under suitable conditions these algorithms are guaranteed to converge to the correct solution at a linear rate. We discuss applications in connection with quantum tomography and the Internet-of-Things. Numerical simulations demonstrate the empirical performance of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Demixing for Low-Latency Communication

In the next generation wireless networks, lowlatency communication is critical to support emerging diversified applications, e.g., Tactile Internet and Virtual Reality. In this paper, a novel blind demixing approach is developed to reduce the channel signaling overhead, thereby supporting low-latency communication. Specifically, we develop a low-rank approach to recover the original information...

متن کامل

Sharp Recovery Bounds for Convex Demixing, with Applications

Demixing refers to the challenge of identifying two structured signals given only the sum of the two signals and prior information about their structures. Examples include the problem of separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis, and the problem of decomposing an observed matrix into a low-rank matrix plus a sparse m...

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Some rank equalities for finitely many tripotent matrices

‎A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations‎. ‎Moreover‎, ‎by using this equality and Theorems 8 and 10 in [Chen M‎. ‎and et al‎. ‎On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications‎, ‎The Scientific World Journal 2014 (2014)‎, ‎Article ID 702413‎, ‎7 page...

متن کامل

Near-Optimal Estimation of Simultaneously Sparse and Low-Rank Matrices from Nested Linear Measurements

In this paper we consider the problem of estimating simultaneously low-rank and row-wise sparse matrices from nested linear measurements where the linear operator consists of the product of a linear operatorW and a matrix Ψ . Leveraging the nested structure of the measurement operator, we propose a computationally efficient two-stage algorithm for estimating the simultaneously structured target...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.09848  شماره 

صفحات  -

تاریخ انتشار 2017